Scikit Image
scikit-image is an easy and most powerful image processing Python package that works with NumPy arrays. The package is imported as skimage.
# importing required librariesimport numpy as np
import skimage.io
import matplotlib.pyplot as plt
%matplotlib inline## reading the image
img = skimage.io.imread('images/Taj_mahal.jpg')
## displaying the image as an array
imgarray([[[43, 50, 60],
[43, 50, 60],
[43, 50, 60],
...,
[63, 46, 36],
[63, 46, 36],
[63, 46, 36]],
[[43, 50, 60],
[43, 50, 60],
[44, 51, 61],
...,
[63, 46, 36],
[63, 46, 36],
[63, 46, 36]],
[[43, 50, 60],
[44, 51, 61],
[44, 51, 61],
...,
[63, 46, 36],
[63, 46, 36],
[63, 46, 36]],
...,
[[32, 30, 31],
[32, 30, 31],
[33, 31, 32],
...,
[24, 16, 14],
[24, 16, 14],
[24, 16, 14]],
[[31, 29, 30],
[31, 29, 30],
[31, 29, 30],
...,
[26, 18, 16],
[26, 18, 16],
[25, 17, 15]],
[[30, 28, 29],
[30, 28, 29],
[30, 28, 29],
...,
[27, 19, 17],
[27, 19, 17],
[27, 19, 17]]], dtype=uint8)# reading the image
plt.imshow(img)
# # displaying the shape of the image
print(img.shape)(500, 870, 3)

img1 = skimage.io.imread('images/pattern.jpg')
plt.imshow(img1)
img1.shape(1300, 1950, 3)
r = img1[:,:,0] # red matrix
g = img1[:,:,1] # green
b = img1[:,:,2] # bluer.shape(950, 634)
plt.figure(figsize=(10,6))
plt.subplot(1,3,1)
plt.imshow(r,cmap='gray')
plt.subplot(1,3,2)
plt.imshow(g,cmap='gray')
plt.subplot(1,3,3)
plt.imshow(b,cmap='gray')
plt.show()
plt.imshow(img1)
plt.figure(figsize=(10,6))
plt.subplot(1,3,1)
plt.imshow(r,cmap='Reds')
plt.subplot(1,3,2)
plt.imshow(g,cmap='Greens')
plt.subplot(1,3,3)
plt.imshow(b,cmap='Blues')
plt.show()
plt.imshow(img1)
Convert Image into Gray Scale
import skimage.color
img2 = skimage.io.imread('images/sky.jpg')
plt.imshow(img2)
# reading the image
gray = skimage.color.rgb2gray(img2)
# displaying the shape of the image(img2)
print(img2.shape)
# displaying the shape of the gray image
print(gray.shape)
# displaying the gray image
print(plt.imshow(gray,cmap='gray'))
skimage.io.imsave('images/Taj_mahal_gray.jpg',gray)
Comments
Post a Comment